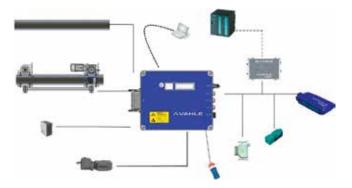
VAHLE

vDRIVE - SISTEMAS DE CONTROL DCS1

vDRIVE - SINGULARIDADES DESTACADAS


SISTEMA

El sistema vDRIVE de VAHLE brinda una amplia gama de potencias comprendidas entre 0,75 kW y 1,5 kW, perfectamente idóneas para cada electrovía (EV). Además, en la oferta hay un gran número de E/S, lo cual brinda la máxima flexibilidad en cada aplicación. El abanico de productos en torno a vDRIVE incluye también dispositivos para posicionado, regulación de distancia y para comunicación.

COMUNICACIÓN

La comunicación entre consumidores fijos y móviles desempeña un papel cada vez más importante en los procesos automatizados. Los sistemas vDRIVE de VAHLE brindan en este aspecto numerosos sistemas de comunicación diferentes para proporcionar la solución óptima que mejor se adapte a su aplicación. Entre las opciones se encuentran el bus de media onda y el bus de carril así como la solución exclusiva de VAHLE Slotted Microwave Guide Mini (Guía microondas ranurada Mini) (SMGM).

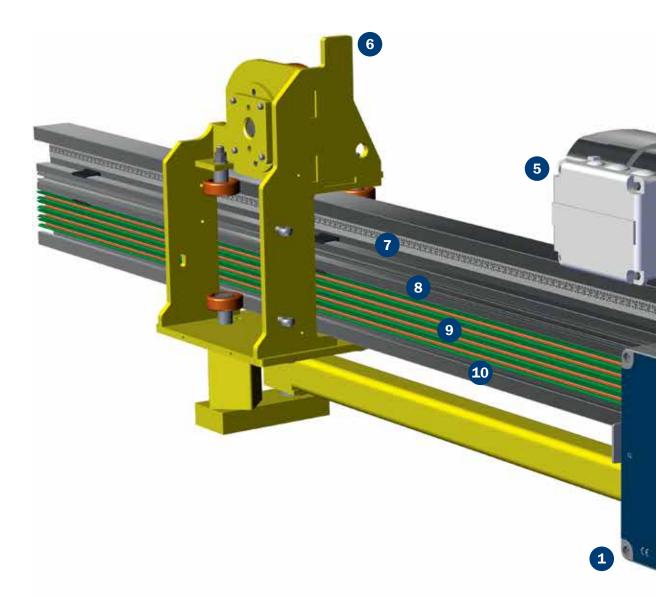
CERTIFICACIÓN

El sistema vDRIVE de VAHLE cumple todas las normas exigidas y es conforme a la Directiva de Baja Tensión, a los requisitos de compatibilidad electromagnética (CEM) y a los procedimientos de test específicos así como a las prescripciones legales en materia de compatibilidad electromagnética.

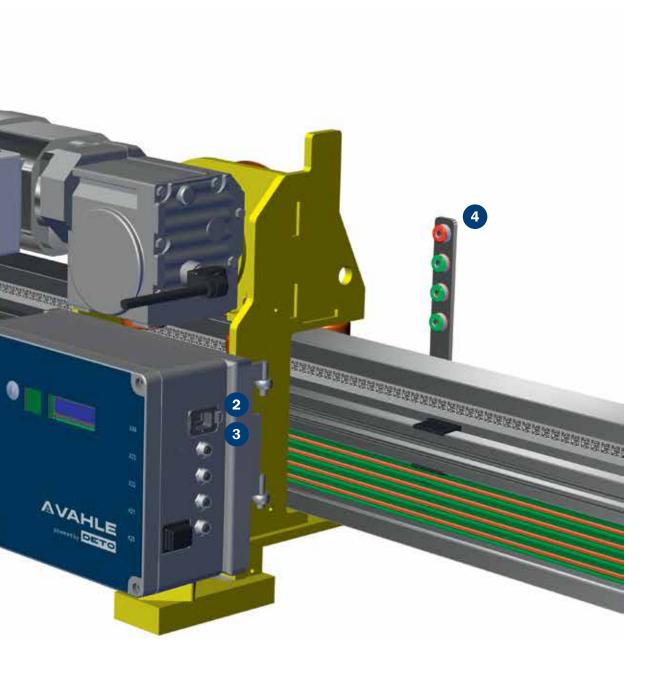
INFORMACIONES DE ESTADO

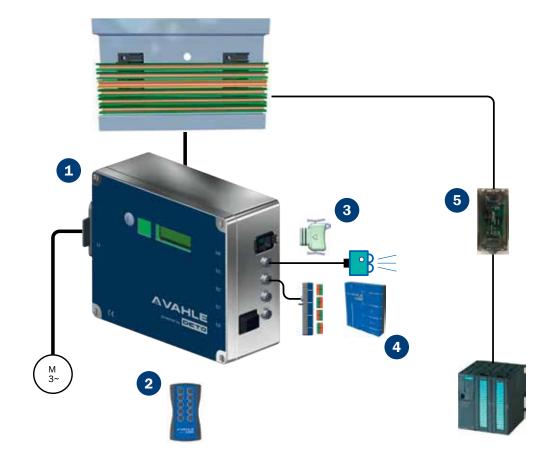
Cada sistema vDRIVE de VAHLE se entrega con un display OLED de dos líneas, de tal manera que puedan consultarse, a petición del interesado, informaciones de estado y operativas. Los datos sobre tensión del circuito intermedio, temperatura, frecuencia, estadística de comunicaciones o sobre la intensidad real absorbida se pueden consultar en todo momento desde este display. Para las operaciones de mantenimiento es posible conectar al sistema de control un ordenador a través de un puerto USB. Con el configurador de vDRIVE EHB de VAHLE se leen, se escriben o se almacenan de nuevo los datos y parámetros de monitorización almacenados internamente.

MANEJO MANUAL


Para hacer posible un mantenimiento cómodo, VAHLE oferta un control remoto por infrarrojos exclusivo. El control remoto ha sido desarrollado específicamente para vDRIVE y brinda en poco tiempo una navegación sencilla para el acceso a todas las informaciones internas necesarias.

CONFIGURADOR


El programa configurador vDRIVE EHB de VAHLE permite un control y supervisión totales del sistema. Se pueden leer o adaptar componentes importantes del sistema como, por ejemplo, la velocidad del motor e informaciones eléctricas. Se registran los errores e interferencias, lo cual hace posible un diagnóstico y detección de fallos con gran rapidez.


DIAGRAMA SINÓPTICO DEL SISTEMA VDRIVE

- 1 Control DCS1
- 2 Cabezal lector APOS Optic (situado debajo)
- Tomacorriente (situado debajo)
- 4 Posicionado
- 5 Motor*
- 6 Módulo suspendido de electrovía*
- 7 Cinta codificada APOS Optic
- 8 Carril SMGM
- 9 Carril unipolar U10
- 10 Perfil para electrovía*

DCS1 COMUNICACIÓN POR SEMIONDAS DCS1-HW

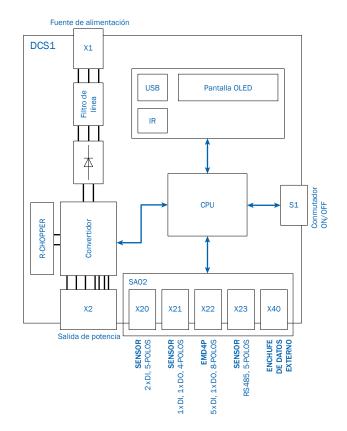
- 1 Control DCS1
- 2 Control remoto
- 3 Memoria USB de datos
- 4 Posicionado
- 5 Módulo de semiondas

SELECCIÓN DE PRODUCTO

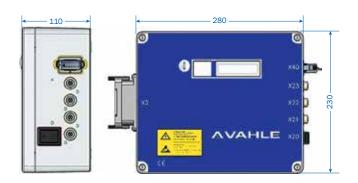
Designación		Referencia
vDRI_DCS1-075-HW-02	Convertidor de frecuencia con 0,75 kW así como comunicación por semiondas	10018098
vDRI_DCS1-110-HW-02	Convertidor de frecuencia con 1,1 kW así como comunicación por semiondas	10018099
vDRI_DCS1-150-HW-02	Convertidor de frecuencia con 1,5 kW así como comunicación por semiondas	10018100
vDRI_IC-CC-C V1.1	Control de bloque de curva / 400 VAC / 1 entrada / 1 salida	10011374
vDRI_IC-CC-C V1.2	Control de bloque de curva / 400 VAC / 1 entrada / 2 salidas	10013168
vDRI_IC-SB-D-V2.1L-400	Control de bloque separador / Variante 1 / Avería de onda completa / 400 VAC	10023036
vDRI_IC-SB-D-V2.1L-480	Control de bloque separador / Variante 1 / Avería de onda completa / 480 VAC	10023037
vDRI_IC-SB-D-V2.2L-400	Control de bloque separador / Variante 2 / Avería de semionda negativa / 400 VAC	10023038
vDRI_IC-SB-D-V2.2L-480	Control de bloque separador / Variante 2 / Avería de semionda negativa / 480 VAC	10023040
vDRI_IC-SB-D-V2.4L-400	Control de bloque separador / Variante 4 / Avería de contacto libre de potencial / 400 VAC	10022742
vDRI_IC-SB-D-V2.4L-480	Control de bloque separador / Variante 4 / Avería de contacto libre de potencial / 480 VAC	10023042
vDRI_MC8/10M	Control remoto para DCS	0777006
vDRI_DS-VD	Memoria USB de datos para DCS	10010330
vDRI_EMD4P	Posicionado	0777004
vDRI_IC-HW-1K	Módulo de semiondas fijo	10010345

DATOS TÉCNICOS

DATOS ELÉCTRICOS

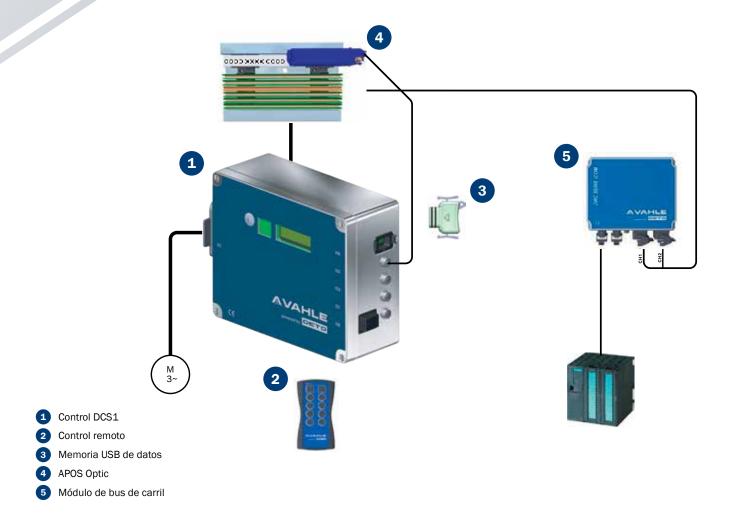

DATOS MECÁNICOS

Dimensiones*	.280x230x110mm
Temperatura ambiente	. 0 +40°C sin condensación
Golpes	. 3M4
Vibraciones	. 7M2
Entorno	. Entorno industrial
Refrigeración	. Por convección
Clase de protección	. 3K3 (-10 +45 °C) con f.m.
	100%
	3K3 ($-0+50$ °C) con f. m. 70 %
Conexión de potencia X1	. Conector VAHLE
Conexión de motor X2	. HAN10B, 10 polos+PE
Adaptador para E/S	. SA02


COMUNICACIÓN

Modo de transmisión	. Carril
Tecnología	Escobilla
Asignación de dirección absoluta	n/a
Estaciones máx./segmento	.n/a
Velocidad de transferencia de datos	.n/a
Transmisión	n/a
Bus de campo móvil	n/a
Equipamiento (fijo/móvil)	Integrado en DCS
Posicionado	EMD4P

DIAGRAMA DE BLOQUES


DIMENSIONES

^{*} Tenga presente que el disipador térmico con una potencia de 1,5 kW del DCS1 tiene las siguientes dimensiones: 280x230x140 mm.

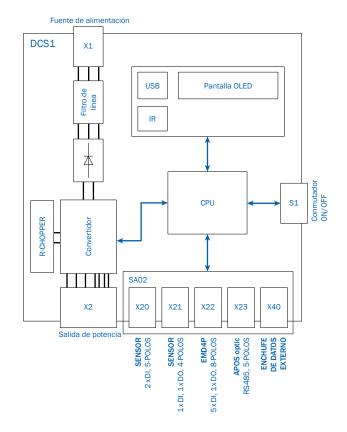
DCS1 DCS1-RB - BUS DE CARRIL

SELECCIÓN DE PRODUCTO

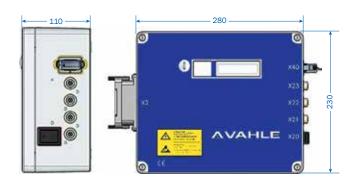
Designación		Referencia
vDRI_DCS1-075-RB-02	Convertidor de frecuencia de 0,75 kW así como comunicación por bus de carril	10018095
vDRI_DCS1-110-RB-02	Convertidor de frecuencia de 1,1kW así como comunicación por bus de carril	10018096
vDRI_DCS1-150-RB-02	Convertidor de frecuencia de 1,5 kW así como comunicación por bus de carril	10018097
vDRI_IC-SB-D-V2.3L-400	Control de bloque separador / Variante 3 / Avería de contacto libre de potencial / 400 VAC	10021605
vDRI_IC-SB-D-V2.3L-480	Control de bloque separador / Variante 3 / Avería de contacto libre de potencial / 480 VAC	10023041
vDRI_MC8/10M	Control remoto	0777006
vDRI_DS-VD	Memoria USB de datos	10010330
APOS Optic	Ver Catálogo vPOS	
vDRI_IC-PCB-2k-PN	Módulo fijo de bus de carril	10011521
vDRI_Funktionsblock/TIA_Portal	Opcional	

DATOS TÉCNICOS

DATOS ELÉCTRICOS

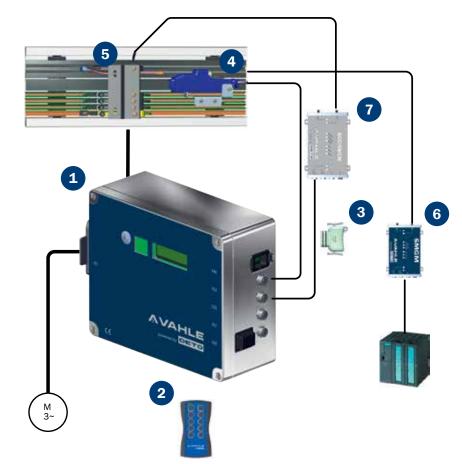

DATOS MECÁNICOS

Dimensiones*	. 280 x 230 x 110 mm
Temperatura ambiente	. 0 +40 °C sin condensación
Golpes	. 3M4
Vibraciones	.7M2
Entorno	. Entorno industrial
Refrigeración	. Por convección
Clase de protección	. 3K3 (−10 +45 °C) con f.m.
	100%
	3K3 (-0+50 °C) con f. m. 70 $\%$
Conexión de potencia X1	. Conector VAHLE
Conexión de motor X2	. HAN10B, 10 polos+PE
Adaptador para E/S	. SA02


COMUNICACIÓN

Modo de transmisión	. Carril
Tecnología	Escobilla
Asignación de dirección absoluta	.n/a
Estaciones máx./segmento	.n/a
Velocidad de transferencia de datos	.n/a
Transmisión	.n/a
Bus de campo móvil	.n/a
Equipamiento (fijo/móvil)	Integrado en DCS
Posicionado	APOS Optic

DIAGRAMA DE BLOQUES


DIMENSIONES

^{*} Tenga presente que el disipador térmico con una potencia de 1,5 kW del DCS1 tiene las siguientes dimensiones: 280x230x140 mm.

DCS1 DCS1-SMGM - SLOTTED GUIDE MICROWAVE MINI

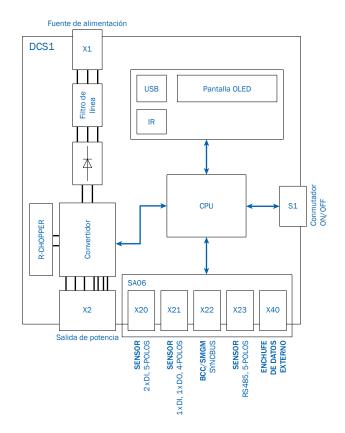
- 1 Control DCS1
- 2 Control remoto
- 3 Memoria USB de datos
- 4 Cabezal lector APOS Optic
- 5 Acoplador SMGM
- 6 Interfaz fija de SMGM
- 7 SMGM BCC/SMGM

SELECCIÓN DE PRODUCTO

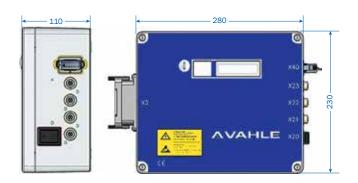
Designación		Referencia
vDRI_DCS1-075-SMGM-06	Convertidor de frecuencia con 0,75 kW así como comunicación vía SMGM	10018101
vDRI_DCS1-110-SMGM-06	Convertidor de frecuencia con 1,1 kW así como comunicación vía SMGM	10018102
vDRI_DCS1-150-SMGM-06	Convertidor de frecuencia con 1,5 kW así como comunicación vía SMGM	10018103
vDRI_MC8/10M	Control remoto	0777006
vDRI_DS-VD	Memoria USB de datos	10010330
APOS Optic	Ver Catálogo vPOS	
SMGM	Ver Catálogo vCOM	

DATOS TÉCNICOS

DATOS ELÉCTRICOS


DATOS MECÁNICOS

Dimensiones*	. 280 x 230 x 110 mm
Temperatura ambiente	. 0 +40°C sin condensación
Golpes	. 3M4
Vibraciones	. 7M2
Entorno	. Entorno industrial
Refrigeración	. Por convección
Clase de protección	. 3K3 (-10+45°C) con f.m.
	100%
	3K3 (–0+50 °C) con f. m. 70 $\%$
Conexión de potencia X1	. Conector VAHLE
Conexión de motor X2	. HAN10B, 10 polos+PE
Adaptador para E/S	. SA06


COMUNICACIÓN

Modo de transmisiónConductor hueco ranurado
TecnologíaCabezal lector
Asignación de dirección absoluta n/a
Estaciones máx./segmenton/a
Velocidad de transferencia de datos n/a
Transmisiónn/a
Bus de campo móviln/a
Equipamiento (fijo/móvil)Integrado en DCS
Posicionado APOS Optic

DIAGRAMA DE BLOQUES

DIMENSIONES

^{*} Tenga presente que el disipador térmico con una potencia de 1,5 kW del DCS1 tiene las siguientes dimensiones: 280x230x140 mm.

AVAHLE

Paul Vahle GmbH & Co. KG

Westicker Str. 52 59174 Kamen Germany

Tel.: +49 2307 704-0 Fax: +49 2307 704-444 info@vahle.de

www.vahle.com