Apceram

			Alúmina	Alúmina	Alúmina	Alúmina	Circonia	Circonia	C. Silicio
Propiedades	Condiciones	Unidades	92 %	96 %	98 %	99.7 %	MgPSZ	YPSZ	SSiC
Densidad		g/cc	3,7	3,8	3,85	3,9	5.75	6	3.15
Absorción		%	0	0	0	0	0	0	0
Permeabilidad gas			0	0	0	0	0	0	0
Resistencia flexión	20° C	Мра	340	358	375	379	900	1300	480
Módulo elástico	20° C	Gpa	280	303	350	370	200	210	410
Ratio poisson	20° C		0.21	0.21	0.22	0.22	0.3	0.23	0.21
Resistencia compresión	20° C	MPa	2100	2068	2500	2600	1750	2500	3500
Dureza		Kg/mm2	1100	1175	1400	1440	1200	1300	2800
Resistencia tracción	25° C	MPa	200	221	248	262	483	- -	-
Resistencia fractura	K(Ic)	Mpa m1/2	4.5	4.5	4.5	4.5	11	13	4
Conductividad térmica	20° C	W/mK	20	24.7	27	30	2.2	2.2	150
Expansion térmica	25-1000° C	1x10 ⁻⁶ /°C	8.1	8.2	8.2	8.2	10.2	10.3	4.4
Calor específico	100° C		900	880	880	880	400	400	800
Resistencia choque térmico	ΔTc	J/Kg*K	250	250	200	200	350	350	300
Temperatura máxima uso		°C	1500	1600	1650	1700	500	1500	1700
Rigidez dieléctrica		ac Kv/mm	8.3	8.3	8.7	8.7	9.4	9	-
Constante dieléctrica	1 MHz	25° C	8.9	9	9.6	9.7	28	29	-
Pérdida dieléctrica	1 MHz	25° C	0,0004	0,0002	0,0002	0,0001	0,001	0,001	-
Resistividad	25° C	ohm-cm	>10 ¹⁴	>1014	>1014	>1014	>1013	>1013	>10 ⁵

La tabla indica propiedades típicas y los valores son representativos. Sin embargo, los datos pueden variar según el método de fabricación y las medidas de la pieza.